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The transverse mass

m2
0 = m2

v +m2
i +2(Ev Ei −pv ·pi −qv qi)

I (E ,p,q) is 4-momentum

m2
T = m2

v +m2
i +2(ev ei −pv ·pi)

I e =
√

p ·p+m2 is transverse energy

m0 ≥mT
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Transverse Mass mT

W → lν

CDF: mW = 80.413±0.048 GeV
arXiv:0708.364246

likelihood is calculated in mW steps of 1 MeV. We use
the standard model W boson width ΓW = 2.094 GeV,
which has an accuracy of 2 MeV and is calculated
for mW = 80.393 GeV. Using pseudoexperiments, we
find the input ΓW affects the fit mW according to the
relation dmW /dΓW = 0.14± 0.04.

A. Fit Results

The results of the mT fits are shown in Fig. 51,
and Table IX gives a summary of the 68% confidence
level uncertainties associated with the fits. We fit for
mW in the range 65 GeV < mT < 90 GeV, where
the fit range has been chosen to minimize the total
uncertainty on mW . The pT and p/T

distributions are
fit in the range 32 GeV < pT < 48 GeV (Figs. 52
and 53, respectively) and have uncertainties shown
in Tables X and XI, respectively. We show the in-
dividual fit results in Table XII, and the negative
log-likelihoods of all fits in Fig. 54.

mT Fit Uncertainties

Source W → µν W → eν Correlation

Tracker Momentum Scale 17 17 100%

Calorimeter Energy Scale 0 25 0%

Lepton Resolution 3 9 0%

Lepton Efficiency 1 3 0%

Lepton Tower Removal 5 8 100%

Recoil Scale 9 9 100%

Recoil Resolution 7 7 100%

Backgrounds 9 8 0%

PDFs 11 11 100%

W Boson pT 3 3 100%

Photon Radiation 12 11 100%

Statistical 54 48 0%

Total 60 62 -

TABLE IX: Uncertainties in units of MeV on the trans-
verse mass fit for mW in the W → µν and W → eν
samples.

We combine results from the W → µν and W →
eν fits using the Best Linear Unbiased Estimator
(BLUE) [75]. The BLUE algorithm defines a pro-
cedure for constructing a complete covariance ma-
trix using the derivative of mW with respect to each
model parameter [18]. We construct this matrix as-
suming each source of systematic uncertainty is in-
dependent of any other source of uncertainty. The
resulting covariance matrix (Table XIII) is then used
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FIG. 51: The simulation (solid) and data (points) mT dis-
tributions for W boson decays to µν (top) and eν (bot-
tom). The simulation corresponds to the best-fit mW ,
determined using events between the two arrows. The un-
certainty is statistical only. The large χ2 for the electron
fit is due to individual bin fluctuations (Fig. 55) and does
not bias the fit result, as evidenced by the small change
in the fit mW when the fit window is varied (Fig. 58).

to combine all six mW fits. When combining any sub-
set of fits, the appropriate smaller covariance matrix
is used.

The result of combining the mW fits to the mT

distribution in the W → µν and W → eν channels is

mW = 80.417± 0.048 GeV. (46)

The χ2/dof of the combination is 3.2/1 and the prob-
ability that two measurements of the same quantity
would have a χ2/dof at least as large as this is 7%.

The combination of the fits to the pT distribution
yields

mW = 80.388± 0.059 GeV, (47)
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Identical Pair Decays and mT2

m2
T = m2

v +m2
i +2(ev ei −pv .pi)

I unobservable

mT 2 = minmaxmT
Lester & Summers, PLB 463 99,1999

Barr et al., J.Phys.G29:2343-2363,2003

I observable

mT 2 ≤m0
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Pair Decays and mT 2

t t → 2b2W → 2b2l2ν

Cho et al. 0804.2185

CDF mT 2 only: mt = 167.9+5.6
−5.0 GeV

CDF note 9769
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mT (2) and the kink

m2
T = m2

v +m2
i +2(ev ei −pv .pi)

I mT is unobservable if mi unknown
I Consider mT = mT (mi)

I Lose boundedness but gain a kink
Choi et al., 0709.0288

BMG, JHEP 0208 051 2008

Barr, BMG & Lester, JHEP 0208 014, 2008

Choi et al., 0711.4526
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mT (2) and the kink
Pair Three-body decay 2g̃→ 2q2q2χ̃0

1
Barr, BMG & Lester, JHEP 0208 014,2008
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What does all of this mean?

I ad hoc definition of mT (2)

I ad hoc generalization to hypothesized masses
I In fact these are natural objects . . .

Cheng and Han, arXiv:0810.5178
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The Kinematic Boundary

mT (2) is the kinematic boundary of an event
Serna, arXiv:0804.3344

Cheng and Han, arXiv:0810.5178

Kinematic constraints for an event:
I (pi +pv )2 = m2

0
I p2

i = m2
i

I pi = /p

Unknowns are pi and (mi ,m0)
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I (pi +pv )2 = m2
0

I p2
i = m2

i
I pi = /p

When do these admit a solution with real momentum and
real, positive energy?

Theorem: a solution exists for m0 ≥mT (mi)
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The Kinematic Boundary

Theorem: a solution exists for m0 ≥mT (mi)

Proof: Two parts
I Part 1: Prove any solution has m0 ≥mT (mi)

I Part 2: Prove that there is a solution with
m0 = mT (mi)
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Part 1

Prove any solution has m0 ≥mT (mi)

I m2
0 = m2

i +m2
v +2(EiEv −pi ·pv −qiqv )

I m2
T ≡m2

i +m2
v +2(eiev −pi ·pv )

I EiEv −qiqv ≥ eiev , equality at Eiqv −Ev qi = 0
I =⇒ m0 ≥mT (mi)
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Part 2

Prove m0 = mT (mi) has a solution

I Find suitable Ei ,qi

I Need qi
q2

i +e2
i

= qv
Ev
∈ [−1,+1]

Proof for mT 2 not much harder
Cheng and Han, arXiv:0810.5178
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The kinematic boundary

New definition of mT (2) as "the kinematic boundary of an
event"

So what?

I Faster algorithm for computing mT 2
Cheng and Han, arXiv:0810.5178

I mT (2) is the best one can do without extra kinematics
or dynamics

I Easier proofs of kinks &c.
I Generalize . . .
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Generalizations I: Combinatorics

Combinatoric ambiguities
I Branch assignments

Barr and Lester, arXiv:0708.1028

I Initial State Radiation
Alwall et al, arXiv:0905.1201

I What is the kinematic boundary?
I Union of allowed regions
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Generalizations II: Non-identical decays

Always considered identical pair decays.

But parents/daughters need not be the same

Distinct parents:
I Squark-gluino production in MSSM

Distinct daughters
I Distinct daughters: > 1 neutral particle with lifetime

> few m
e.g. Neutrini, Multiple photini

Dimopoulos et al, to appear
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Generalizations II: Non-identical decays

mT 2 is not much good . . .
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. . . use the kinematic boundary?
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Generalizations II: Non-identical decays

Focus on case with non-identical parents

I 3-d space of unknown masses (mi ,m0,m′0)
I Kinematic boundary is a surface

Extremal surface from decoupling argument . . .
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Generalizations II: Non-identical decays

Constraints

I (pi +pv )2 = m2
0

I p2
i = m2

i

Ditto for the other decay, plus

I pi +p′i = /p

Last equation decouples for extremal surface
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Generalizations II: Non-identical decays

Extremal surface

Lots of interesting kinks . . .
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Generalizations II: Non-identical decays

Is there an analogue of the usual mT 2?

m2
T 2(mi ,m′i ,

m0
m′0

) = min max(
m′0
m0

m2
T , m0

m′0
m′2T )
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Generalizations III: The inverse of mT (2)

Use m0 = mT (2)(mi) if you know the mass of the daughter
but not the parent . . .

. . . what about the other way round?

I Kinematic boundary the same
I Need the inverse of m0 = mT (2)(mi)
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Generalizations III: The inverse of mT (2)

I m2
T = (αi +αv )2, α = (e,p)

I (m2
T )−1 = (α0−αv )2

I mT2 = min max(mT ,m′T )

I m−1
T2 = max min(m−1

T ,m′−1
T )
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Conclusions

I mT (2) &c are natural objects: define kinematic
boundary

I Also the "best" objects
I Easily generalized
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