Transverse observables and the kinematic boundary

Ben Gripaios

CERN

3rd September 2009

Outline

- $m_{T(2)}$, kinks \&c.
- What does it all mean? The kinematic boundary
- Generalizations: combinatorics, non-identical decays, and the inverse of $m_{T(2)}$

In the beginning ...

The transverse mass

$m_{0}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(E_{v} E_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}-q_{v} q_{i}\right)$

- (E, \mathbf{p}, q) is 4-momentum

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

$m_{0} \geq m_{T}$

The transverse mass

$$
m_{0}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(E_{v} E_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}-q_{v} q_{i}\right)
$$

- (E, \mathbf{p}, q) is 4-momentum
$m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)$
- $\boldsymbol{e}=\sqrt{\mathbf{p} \cdot \mathbf{p}+m^{2}}$ is transverse energy

$m_{0} \geq m_{T}$

The transverse mass

$$
m_{0}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(E_{v} E_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}-q_{v} q_{i}\right)
$$

- (E, \mathbf{p}, q) is 4-momentum

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

- $\boldsymbol{e}=\sqrt{\mathbf{p} \cdot \mathbf{p}+m^{2}}$ is transverse energy
$m_{0} \geq m_{T}$

Transverse Mass m_{T}

$W \rightarrow I v$

CDF: $m_{W}=80.413 \pm 0.048 \mathrm{GeV}$
arXiv:0708.3642

Identical Pair Decays and $m_{T 2}$

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

$m_{T 2}=\min \max m_{T}$

Identical Pair Decays and $m_{T 2}$

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

- unobservable

$m_{T 2}=\min \max m_{T}$

Identical Pair Decays and $m_{T 2}$

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

```
mT(2) &c
```

The boundary
Generalizations
Conclusions

- unobservable
$m_{T 2}=\min \max m_{T}$
Lester \& Summers, PLB 463 99,1999
Barr et al., J.Phys.G29:2343-2363,2003
- observable
$m_{T 2} \leq m_{0}$

Identical Pair Decays and $m_{T 2}$

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} e_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

```
mT(2) &c
```

The boundary
Generalizations
Conclusions

- unobservable
$m_{T 2}=\min \max m_{T}$
Lester \& Summers, PLB 463 99,1999
Barr et al., J.Phys.G29:2343-2363,2003
- observable
$m_{T 2} \leq m_{0}$

Pair Decays and $m_{T}{ }^{2}$

$t \bar{t} \rightarrow 2 b 2 W \rightarrow 2 b 2 / 2 v$

Cho et al. 0804.2185
Conclusions

CDF $m_{T 2}$ only: $m_{t}=167.9_{-5.0}^{+5.6} \mathrm{GeV}$
CDF note 9769

$m_{T(2)}$ and the kink

$$
m_{T}^{2}=m_{v}^{2}+m_{i}^{2}+2\left(e_{v} \boldsymbol{e}_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

$m_{T(2)} \& c$
The boundary
Generalizations
Conclusions

$m_{T(2)}$ and the kink

$$
m_{T}^{2}=m_{V}^{2}+m_{i}^{2}+2\left(e_{v} \boldsymbol{e}_{i}-\mathbf{p}_{v} \cdot \mathbf{p}_{i}\right)
$$

- m_{T} is unobservable if m_{i} unknown
- Consider $m_{T}=m_{T}\left(m_{i}\right)$
- Lose boundedness but gain a kink

Choi et al., 0709.0288
BMG, JHEP 02080512008
Barr, BMG \& Lester, JHEP 0208 014, 2008
Choi et al., 0711.4526

$m_{T(2)}$ and the kink

Pair Three-body decay $2 \tilde{g} \rightarrow 2 q 2 \bar{q} 2 \tilde{\chi}_{1}^{0}$

Barr, BMG \& Lester, JHEP 0208 014,2008

$m_{T(2)}$ \& c
The boundary

What does all of this mean?

What does all of this mean?

- ad hoc definition of $m_{T(2)}$
- ad hoc generalization to hypothesized masses
- In fact these are natural objects ...

The Kinematic Boundary

The Kinematic Boundary

$m_{T(2)}$ is the kinematic boundary of an event

Kinematic constraints for an event:

Unknowns are p_{i} and (m_{i}, m_{0})

The Kinematic Boundary

$m_{T(2)}$ is the kinematic boundary of an event

Kinematic constraints for an event:

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$
- $\mathbf{p}_{i}=\mathbf{p}$

Unknowns are p_{i} and $\left(m_{i}, m_{0}\right)$

The Kinematic Boundary

$m_{T(2)}$ is the kinematic boundary of an event

Kinematic constraints for an event:

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$
- $\mathbf{p}_{i}=\mathbf{p}$

Unknowns are p_{i} and $\left(m_{i}, m_{0}\right)$

The Kinematic Boundary

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$
- $\mathbf{p}_{i}=\mathbf{p}$

When do these admit a solution with real momentum and real, positive energy?

Theorem: a solution exists for $m_{0} \geq m_{T}\left(m_{i}\right)$

The Kinematic Boundary

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$
- $\mathbf{p}_{i}=\mathbf{p}$

When do these admit a solution with real momentum and real, positive energy?

Theorem: a solution exists for $m_{0} \geq m_{T}\left(m_{i}\right)$

The Kinematic Boundary

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$
- $\mathbf{p}_{i}=\mathbf{p}$

When do these admit a solution with real momentum and real, positive energy?

Theorem: a solution exists for $m_{0} \geq m_{T}\left(m_{i}\right)$

The Kinematic Boundary

Theorem: a solution exists for $m_{0} \geq m_{T}\left(m_{i}\right)$

Proof: Two parts

- Part 1: Prove any solution has $m_{0} \geq m_{T}\left(m_{i}\right)$
- Part 2: Prove that there is a solution with $m_{0}=m_{T}\left(m_{i}\right)$

Part 1

Prove any solution has $m_{0} \geq m_{T}\left(m_{i}\right)$

- $m_{0}^{2}=m_{i}^{2}+m_{v}^{2}+2\left(E_{i} E_{v}-\mathbf{p}_{i} \cdot \mathbf{p}_{v}-q_{i} q_{v}\right)$
- $m_{T}^{2} \equiv m_{i}^{2}+m_{v}^{2}+2\left(e_{i} e_{v}-\mathbf{p}_{i} \cdot \mathbf{p}_{v}\right)$
- $E_{i} E_{v}-q_{i} q_{v} \geq e_{i} e_{v}$, equality at $E_{i} q_{v}-E_{v} q_{i}=0$ $\Longrightarrow m_{0} \geq m_{T}\left(m_{i}\right)$

The boundary
Generalizations
Conclusions

Part 1

Prove any solution has $m_{0} \geq m_{T}\left(m_{i}\right)$

- $m_{0}^{2}=m_{i}^{2}+m_{v}^{2}+2\left(E_{i} E_{v}-\mathbf{p}_{i} \cdot \mathbf{p}_{v}-q_{i} q_{v}\right)$
- $m_{T}^{2} \equiv m_{i}^{2}+m_{v}^{2}+2\left(e_{i} e_{v}-\mathbf{p}_{i} \cdot \mathbf{p}_{v}\right)$
- $E_{i} E_{v}-q_{i} q_{v} \geq e_{i} e_{v}$, equality at $E_{i} q_{v}-E_{v} q_{i}=0$
- $\Longrightarrow m_{0} \geq m_{T}\left(m_{i}\right)$

Part 2

Prove $m_{0}=m_{T}\left(m_{i}\right)$ has a solution

- Find suitable E_{i}, q_{i}
- Need $\frac{q_{i}}{q_{i}^{2}+e_{1}^{2}}=\frac{q_{v}}{E_{v}} \in[-1,+1]$

Proof for $m_{T 2}$ not much harder

Part 2

Prove $m_{0}=m_{T}\left(m_{i}\right)$ has a solution

- Find suitable E_{i}, q_{i}
- Need $\frac{q_{i}}{q_{i}^{2}+e_{i}^{2}}=\frac{q_{v}}{E_{v}} \in[-1,+1]$

Proof for $m_{T 2}$ not much harder

The kinematic boundary

New definition of $m_{T(2)}$ as "the kinematic boundary of an event"

So what?

- Faster algorithm for computing $m_{T 2}$
- $m_{T(2)}$ is the best one can do without extra kinematics or dynamics
- Easier proofs of kinks \&c.
- Generalize

The kinematic boundary

New definition of $m_{T(2)}$ as "the kinematic boundary of an event"

- Faster algorithm for computing $m_{T 2}$
- $m_{T(2)}$ is the best one can do without extra kinematics or dynamics
- Easier proofs of kinks \&c.
- Generalize

The kinematic boundary

New definition of $m_{T(2)}$ as "the kinematic boundary of an event"

So what?

- Faster algorithm for computing $m_{T 2}$

Cheng and Han, arXiv:0810.5178

- $m_{T(2)}$ is the best one can do without extra kinematics or dynamics
- Easier proofs of kinks \&c.
- Generalize ...

Generalizations

Generalizations I: Combinatorics

Combinatoric ambiguities

- Branch assignments
- Initial State Radiation
-What is the kinematic boundary?
- Union of allowed regions

Generalizations I: Combinatorics

Combinatoric ambiguities

- Branch assignments
- Initial State Radiation

Alwall et al, arXiv:0905.1201

- What is the kinematic boundary?
- Union of allowed regions

Generalizations II: Non-identical decays

Always considered identical pair decays.
But parents/daughters need not be the same

Distinct parents:

- Squark-aluino production in MSSM

Distinct daughters

- Distinct daughters: > 1 neutral particle with lifetime
$>$ few m
e.g. Neutrini, Multiple photini

Generalizations II: Non-identical decays

Always considered identical pair decays.
But parents/daughters need not be the same
Distinct parents:

- Squark-gluino production in MSSM

Distinct daughters

- Distinct daughters: > 1 neutral particle with lifetime $>$ few m
e.g. Neutrini, Multiple photini

Generalizations II: Non-identical decays

$m_{T 2}$ is not much good...

... use the kinematic boundary?

Generalizations II: Non-identical decays

Focus on case with non-identical parents

- 3-d space of unknown masses $\left(m_{i}, m_{0}, m_{0}^{\prime}\right)$
- Kinematic boundary is a surface

Extremal surface from decoupling argument

Generalizations II: Non-identical decays

Focus on case with non-identical parents

- 3-d space of unknown masses $\left(m_{i}, m_{0}, m_{0}^{\prime}\right)$
- Kinematic boundary is a surface

Extremal surface from decoupling argument

Generalizations II: Non-identical decays

Focus on case with non-identical parents

- 3-d space of unknown masses $\left(m_{i}, m_{0}, m_{0}^{\prime}\right)$
- Kinematic boundary is a surface

Extremal surface from decoupling argument ...

Generalizations II: Non-identical decays

Constraints
The boundary
Generalizations
Conclusions

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$

Ditto for the other decay, plus

Last equation decouples for extremal surface

Generalizations II: Non-identical decays

Constraints

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$

Ditto for the other decay, plus

- $\mathbf{p}_{i}+\mathbf{p}_{i}^{\prime}=\mathbf{p}$

Last equation decouples for extremal surface

Generalizations II: Non-identical decays

Constraints

- $\left(p_{i}+p_{v}\right)^{2}=m_{0}^{2}$
- $p_{i}^{2}=m_{i}^{2}$

Ditto for the other decay, plus

- $\mathbf{p}_{i}+\mathbf{p}_{i}^{\prime}=\mathbf{p}$

Last equation decouples for extremal surface

Generalizations II: Non-identical decays

Extremal surface

$m_{T(2)}$ \& C
The boundary
Generalizations
Conclusions

Lots of interesting kinks ...

Generalizations II: Non-identical decays

Is there an analogue of the usual $m_{T 2}$?
$m_{T 2}^{2}\left(m_{i}, m_{i}^{\prime}, \frac{m_{0}}{m_{0}^{\prime}}\right)=\min \max \left(\frac{m_{0}^{\prime}}{m_{0}} m_{T}^{2}, \frac{m_{0}}{m_{0}^{\prime}} m_{T}^{\prime 2}\right)$

Generalizations II: Non-identical decays

Is there an analogue of the usual $m_{T 2}$?

$$
m_{T 2}^{2}\left(m_{i}, m_{i}^{\prime}, \frac{m_{0}}{m_{0}^{\prime}}\right)=\min \max \left(\frac{m_{0}^{\prime}}{m_{0}} m_{T}^{2}, \frac{m_{0}}{m_{0}^{\prime}} m_{T}^{\prime 2}\right)
$$

Generalizations III: The inverse of $m_{T(2)}$

Use $m_{0}=m_{T(2)}\left(m_{i}\right)$ if you know the mass of the daughter but not the parent...
what about the other way round?

- Kinematic boundary the same
- Need the inverse of $m_{0}=m_{T(2)}\left(m_{i}\right)$

Generalizations III: The inverse of $m_{T(2)}$

Use $m_{0}=m_{T(2)}\left(m_{i}\right)$ if you know the mass of the daughter but not the parent...
... what about the other way round?

- Kinematic boundary the same
- Need the inverse of $m_{0}=m_{T(2)}\left(m_{i}\right)$

Generalizations III: The inverse of $m_{T(2)}$

Use $m_{0}=m_{T(2)}\left(m_{i}\right)$ if you know the mass of the daughter but not the parent...
... what about the other way round?

- Kinematic boundary the same
- Need the inverse of $m_{0}=m_{T(2)}\left(m_{i}\right)$

Generalizations III: The inverse of $m_{T(2)}$

- $m_{T}^{2}=\left(\alpha_{i}+\alpha_{v}\right)^{2}, \alpha=(e, \mathbf{p})$
- $\left(m_{T}^{2}\right)^{-1}=\left(\alpha_{0}-\alpha_{v}\right)^{2}$

Generalizations III: The inverse of $m_{T(2)}$

- $m_{T}^{2}=\left(\alpha_{i}+\alpha_{v}\right)^{2}, \alpha=(e, \mathbf{p})$
- $\left(m_{T}^{2}\right)^{-1}=\left(\alpha_{0}-\alpha_{v}\right)^{2}$
- $m_{T 2}=\min \max \left(m_{T}, m_{T}^{\prime}\right)$
- $m_{T 2}^{-1}=\max \min \left(m_{T}^{-1}, m_{T}^{\prime-1}\right)$

Conclusions

- $m_{T(2)} \& c$ are natural objects: define kinematic boundary
- Also the "best" objects
- Easily generalized

